首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8098篇
  免费   1147篇
  国内免费   1460篇
  2024年   5篇
  2023年   192篇
  2022年   158篇
  2021年   312篇
  2020年   390篇
  2019年   571篇
  2018年   566篇
  2017年   395篇
  2016年   395篇
  2015年   369篇
  2014年   448篇
  2013年   736篇
  2012年   333篇
  2011年   419篇
  2010年   365篇
  2009年   451篇
  2008年   466篇
  2007年   479篇
  2006年   421篇
  2005年   401篇
  2004年   372篇
  2003年   348篇
  2002年   315篇
  2001年   239篇
  2000年   163篇
  1999年   202篇
  1998年   170篇
  1997年   123篇
  1996年   115篇
  1995年   109篇
  1994年   96篇
  1993年   79篇
  1992年   74篇
  1991年   64篇
  1990年   42篇
  1989年   21篇
  1988年   38篇
  1987年   32篇
  1986年   25篇
  1985年   31篇
  1984年   43篇
  1983年   24篇
  1982年   47篇
  1981年   19篇
  1980年   11篇
  1979年   13篇
  1978年   6篇
  1977年   6篇
  1973年   3篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
971.
The objective of ecological engineering is to design sustainable ecosystems that integrate human communities and their natural environment for the benefit of both. In this paper, we illustrate how social-ecological modeling can be used as a tool to clarify this objective at a landscape scale for freshwater systems. Coupled social-ecological systems (SESs) are open, dynamic systems subject to both ecological and socioeconomic perturbations. Here we demonstrate the interactive effects of social and technological uncertainties on SES dynamics over time. Additionally, we integrate research on ecosystem stability, social-ecological modeling, and ecological engineering to offer guidance for research at the human-environment interface. Based on a case study of Lake Erie's Sandusky watershed, we use an integrated human-biophysical model to investigate the influence of two parameters on SES dynamics: (1) regional societal preferences that impact watershed management and (2) technological innovation that alters agricultural nutrient efficiency. Our results illustrate ways in which SES dynamics and optimum management strategies depend on societal preferences within the region, indicating a key area of uncertainty for future investigation. As guidance for SES restoration, our model results also illustrate the conditions under which technological change that increases nutrient efficiency on farms can and cannot create a win-win, or increase both human welfare and SES resistance to eutrophication simultaneously. Using these results, we elucidate the value of ecological engineering and offer guidance for assessments of ecological engineering projects using social-ecological modeling.  相似文献   
972.
Sun YC  Wen JL  Xu F  Sun RC 《Bioresource technology》2011,102(10):5947-5951
Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-d-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1 → 4)-linked d-xylopyranosyl residues, having ramifications of α-l-arabinofuranose and 4-O-methyl-d-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400 °C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.  相似文献   
973.
Ram Prasad B  Warshel A 《Proteins》2011,79(10):2900-2919
The molecular origin of nucleotide insertion catalysis and fidelity of DNA polymerases is explored by means of computational simulations. Special attention is paid to the examination of the validity of proposals that invoke prechemistry effects, checkpoints concepts, and dynamical effects. The simulations reproduce the observed fidelity in Pol β, starting with the relevant observed X-ray structures of the complex with the right (R) and wrong (W) nucleotides. The generation of free energy surfaces for the R and W systems also allowed us to analyze different proposals about the origin of the fidelity and to reach several important conclusions. It is found that the potential of mean force (PMF) obtained by proper sampling does not support QM/MM-based proposals of a large barrier before the prechemistry state. Furthermore, examination of dynamical proposals by the renormalization approach indicates that the motions from open to close configurations do not contribute to catalysis or fidelity. Finally we discuss and analyze the induced fit concept and show that, despite its importance, it does not explain fidelity. That is, the fidelity is apparently due to the change in the preorganization of the chemical site, as a result of the relaxation of the binding site upon binding of the incorrect nucleotide. Finally and importantly, since the issue is the barrier associated with the enzyme-substrate (ES)/DNA complex at the chemical transition state and not the path to this complex formation (unless this path involves rate determining steps), it is also not useful to invoke checkpoints while discussing fidelity.  相似文献   
974.
Best RB  Mittal J 《Proteins》2011,79(4):1318-1328
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two‐state folder, the GB1 hairpin. We use extensive replica‐exchange molecular dynamics simulations to characterize the free‐energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
975.
Understanding the impact of natural and anthropogenic landscape features on population connectivity is a major goal in evolutionary ecology and conservation. Discovery of dispersal barriers is important for predicting population responses to landscape and environmental changes, particularly for populations at geographic range margins. We used a landscape genetics approach to quantify the effects of landscape features on gene flow and connectivity of boreal toad (Bufo boreas) populations from two distinct landscapes in south-east Alaska (Admiralty Island, ANM, and the Chilkat River Valley, CRV). We used two common methodologies for calculating resistance distances in landscape genetics studies (resistance based on least-cost paths and circuit theory). We found a strong effect of saltwater on genetic distance of CRV populations, but no landscape effects were found for the ANM populations. Our discordant results show the importance of examining multiple landscapes that differ in the variability of their features, to maximize detectability of underlying processes and allow results to be broadly applicable across regions. Saltwater serves as a physiological barrier to boreal toad gene flow and affects populations on a small geographic scale, yet there appear to be few other barriers to toad dispersal in this intact northern region.  相似文献   
976.
An enhanced conformational sampling method, multicanonical molecular dynamics (McMD), was applied to the ab intio folding of the 57-residue first repeat of human glutamyl- prolyl-tRNA synthetase (EPRS-R1) in explicit solvent. The simulation started from a fully extended structure of EPRS-R1 and did not utilize prior structural knowledge. A canonical ensemble, which is a conformational ensemble thermodynamically probable at an arbitrary temperature, was constructed by reweighting the sampled structures. Conformational clusters were obtained from the canonical ensemble at 300 K, and the largest cluster (i.e., the lowest free-energy cluster), which contained 34% of the structures in the ensemble, was characterized by the highest similarity to the NMR structure relative to all alternative clusters. This lowest free-energy cluster included native-like structures composed of two anti-parallel α-helices. The canonical ensemble at 300 K also showed that a short Gly-containing segment, which adopts an α-helix in the native structure, has a tendency to be structurally disordered. Atomic-level analyses demonstrated clearly that inter-residue hydrophobic interactions drive the helix formation of the Gly-containing segment, and that increasing the hydrophobic contacts accompanies exclusion of water molecules from the vicinity of this segment. This study has shown, for the first time, that the free-energy landscape of a structurally well-ordered protein of about 60 residues is obtainable with an all atom model in explicit water without prior structural knowledge.  相似文献   
977.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.  相似文献   
978.
VHH is the binding domain of the IgG heavy chain. Some VHHs have an extremely long CDR3 that contributes to antigen binding. We studied the antigen binding ability of CDR3 by grafting a CDR3 from an antigen-binding VHH onto a nonbinding VHH. cAb-CA05-(1RI8), the CDR3-grafted VHH, had an antigen-binding ability. To find a human scaffold protein acceptable for VHH CDR3 grafting, we focused on the conserved structure of VHH, especially the N-terminal and C-terminal amino acid residues of the CDR3 loop and the Cys residue of CDR1. Human origin protein structures with the same orientation were searched in PDB and ubiquitin was selected. Ubi-(1RI8), the CDR3-grafted ubiquitin, had antigen-binding ability, though the affinity was relatively low compared to cAb-CA05-(1RI8). The thermodynamic parameters of Ubi-(1RI8) binding to HEWL were different from cAb-CA05-(1RI8). Hydrogen-deuterium exchange experiments showed decreased stability around the CDR3 grafting region of Ubi-(1RI8), which might explain the decreased antigen-binding ability and the differences in thermodynamic properties. We concluded that the orientation of the CDR3 sequence of Ubi-(1RI8) could not be reconstructed correctly.  相似文献   
979.
980.
Bohonak AJ  Vandergast AG 《Molecular ecology》2011,20(12):2477–9; authors reply 2480-2477–9; authors reply 2482
In a recent Opinion article in Molecular Ecology, Wang (2010) emphasizes the fact that current patterns of genetic differentiation among populations reflect processes that have acted over temporal scales ranging from contemporary to ancient. He draws a sharp distinction between the fields of phylogeography (as the study of historical processes) and landscape genetics (which he restricts to very recent processes). Wang characterizes DNA sequence data as being inappropriate for the study of contemporary population processes and further states that studies which only include mitochondrial DNA or chloroplast DNA data cannot be considered part of landscape genetics. In this response, we clarify the generally accepted view that DNA sequence data can be analysed with methods that separate contemporary and historical processes. To illustrate this point, we summarize the study of Vandergast et al. (2007), which Wang mischaracterizes as being confused in terms of temporal scale. Although additional focus should be placed on the important issue of correct data interpretation, we disagree strongly with the implication that contemporary and historic processes cannot be separated in the analyses of DNA sequence data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号